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Introduction 
PSCAN2 is a superconductor circuit simulator that came from ancestry of a long line of superconductor 
simulators since 1980-s.  The development of PSCAN2 is based on experience obtained from the 
development and exploitation of the previous PSCAN (Portable Superconductor Circuit ANalyzer) 
program [1, 2] and JULIA superconductor simulator. 

PSCAN2 comprises a Python module (with accessible source files) and a KLU-library-based linear 
equation system solver.  The Python part of the program performs netlist, parameters, and HDL parsing 
and prepares the sparse matrix for the solver.   On a higher level, there are functions for running circuit 
simulation, calculating margins on circuit parameters, and optimizing the circuit.  All these functions are 
integrated under the pyQt-based GUI module.  

Warning: PSCAN2 is optimized for simulating SFQ circuits with dc bias currents.  If you need to simulate 
ac-biased circuits, - set psglobals.OptimizeSimulation parameter to False (see Appendix C) 

How to start? 

Download PSCAN2 distribution for Windows10 or Linux from www.pscan2sim.org with the detailed 
installation instructions. 

PSCAN2 functions can be called directly from the Python shell by execution of Python code (like IV curve 
simulation or batch optimization, please, see examples) 

python  <program.py>  <netlist_name> 

or by means of PSCAN2 GUI module 

python  –m pscan2.gui  <netlist_name> 

The last argument is the name of the root cell in the schematics. The schematics Spice netlist should be 
in the file named as the root cell and with extension “.cir” (<netlist_name>.cir). 

Expression syntax. 
PSCAN2 operates with 

• A numeric constant (e.g., 1.21).  A real number in any format supported by Python. 

• A string constant (e.g., “text”).  A text string in parentheses.  

• An identifier (e.g., xj1).  A variable defined at initializing. 

• A user-defined function (in the executable Python file). 

• All functions from Python’s math module. 

  

http://www.pscan2sim.org/
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Table 1.  Operators available in PSCAN2 

Operator Type Function 

“-“  unary arithmetic Negate 

“not” or “!”  unary logical NOT 

“*”  binary arithmetic Multiply 

“/”  binary arithmetic Divide 

“+”  binary arithmetic Add 

“-“  binary arithmetic Subtract 

“<”  Logical less than 

“<=”  Logical less than or equal to 

“>”  Logical greater than 

“>=”  Logical greater or equal 

“eq” or “==”  Logical Equal 

“ne” or “!=”  Logical not equal 

“and” or “&&”  Logical AND 

“or” or “||”  Logical OR 

PSCAN2 has the following built-in functions: 

p(<node>/<element>) – returns superconductor phase on the circuit node or phase drop across the 
element at the current time step 

v(<node>/<element>) – returns voltage drop between the circuit node and the ground or across the 
element at the current time step 

i(<element>) – returns value of the current through the element at the current time step 
 
psfq(<period>, <duration>, <start>) – a function that generates a periodical 2π jump with duration 

<duration> at the time moment <start> with the period <period>.. It is usually applied to a 
phase generator for defining input SFQ signals. 

n(<jjname>) – number of flux quanta passed through the Josephson junction or the phase source, i.e., 
the normalized by 2π phase drop. 

pyeval(<python expression>) – executes a python expression in the text string <python expression>. (see 
Appendix C for details) 
PSCAN2 also supports all functions from Python’s math module (e.g., I1=a1*sin(0.01*tcurr)) 
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Circuit netlist 
PSCAN2 imports the circuit schematics as a standard SPICE netlist format supported by the majority of 
schematic editors.  As an example, Fig. 1 shows a simple RSFQ circuit and its netlist.  This is a non-
hierarchical (“flat”) circuit, so, no sub-circuit is present here.  PSCAN2 parser is case insensitive. 

 

Fig. 1.  Schematics of a single-stage RSFQ JTL and its Spice netlist. 

Each line, describing the element, has a format: 
<elements’_name> <node_1> …<node_n>  <elements’_model> 
 
Element’s type defined by the first letter of its name: 
‘L’ – an inductor 
‘R’ – a resistor 
‘C’ – a capacitor 
‘I’– a current source 
‘P’ – a phase source 
‘U’– a voltage source 
‘J’ – a Josephson junction 
‘M’ – a special element called “mutual inductance” 
‘X’ – a subcircuit in hierarchical schematics 
<node_1> …<node_n>   are the names of the nodes, the element is connected to.  The number of nodes 
corresponds to the number of terminals (2 in most of the cases).  Node names are strings and can be 
either numbers or text identifiers.  The node named “0” (zero) is a designated node, representing 
connection to the ground.   
 
An elements’ model is a simulation model describing phase/voltage-current relation at the nodes of the 
element, i.e., a numerical simulation of the circuit.  The majority of circuit linear element models, such 
as inductance, capacitance, resistance, etc., are described simply by a single parameter (a variable) that 
may be represented as an arithmetic expression.  A more complex element (like a Josephson junction or 
a transformer) requires a specially written model (a function) with multiple parameters.  Please, see 
Appendix A for detailed models description. 
 
For example, the Spice record 

R1 1 0 R1 
L1 2 n3 L1 
L2 n3 n4 L2 
I1 n4 0 I1 
L3 n4 n5 L2 
L4 n5 1 L3 
P1 2 0 P1 
J1 n3 0 J 
J2 n5 0 J 
.END 
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L2  n3  n4  L2*XL2*XL 
Describes inductor named L2 inserted between nodes “n3” and “n4” with its inductance value equal to 
the product of three parameters (L2, XL2 and XL).  Such representation of the inductance value is very 
convenient for optimization procedure, as we shall discuss it later.  For convenience, PSCAN2 substitutes 
in element L2 model description “?” with the construct “L2*XL2*XL”. The same goes with other single-
parameter primitives. See Appendix B for more details. 
 
The record 
J1  n3  0  rsj(J1*XJ1*XJ, 1.0, 1.0) 
represents a Josephson junction J1 connected between node “n3” and the ground (0) and described by 
RSJ (Mc Camber-Stewart) model (see p. 8).  Its critical current is the product of three parameters (J1, XJ1 
and XJ), its normal resistance and capacitance are equal to 1.0 (a nominally shunted JJ, i.e., with βc=1.0). 
 
And, finally, record 
M1  0  llm(L1, L2, Lm12) 
Indicates that the mutual inductance between inductors L1 and L2 is equal to parameter Lm12.  The 
name and the node of this specific element is not relevant for the netlist, as long as it starts with “M” 
and the schematic editor accepts them. 
 
Hierarchical netlist 
 
PSCAN2 fully supports hierarchical SPICE format. Name of the hierarchical element in the netlist starts 
with the letter ‘X’. The record format is  

X<name>  <node_1> … <node_n>  <circuit_name> 
 
Here, 
<name>  is the name of the subcircut instance,  
<node_n>  connected nodes, in accordance to cells’ terminals (pins) 
<circuit_name>  is the subcircut name. 
 
Fig. 2 shows hierarchical schematics from the example of invertor cell NOT (you can download file 
testnot.zip with this example from www.pscan2sim.org ).  All element symbols in the picture are 
schematics-editor-dependent (Cadence/OrCad in this case) and are not relevant for the netlist.  Every 
hierarchical object in the circuit has the name of its instance in the value field. 
 
Schematics of all subcircuits for this test structure are in Fig. 3.  The resulting netlist file is in the 
testnot.zip example.  The hierarchy depth is not limited (i.e., Fig. 3b shows subcircuit STDIN, that, in 
turn, uses two subcircuits JTL1).  Subcircuits JTL (Fig. 3c) and JTL1 (Fig. 3d) have a minor difference in a 
single inductor L3.  Even if their schematics was identical, but having different parameter, they should 
be named differently, because circuit name identifies the file with parameters for this circuit. 

http://www.pscan2sim.org/
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Fig. 2.  Hierarchical circuit TESTNOT consisting of the following sub-circuits: NOT1, JTL, JTL1, and STDIN1 
 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3.  Sub-cells of circuit TESTNOT:  a) NOT1, b) STDIN1, c) JTL, and d) JTL1 
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Element models 
 
The current version of PSCAN2 operates with a quite extensive set of superconductor element models.  
Here is the list of basic PSCAN elements and their numerical description: 
 
Inductor 

𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝜙𝜙𝑖𝑖−𝜙𝜙𝑗𝑗
𝐿𝐿

, where 𝜙𝜙𝑖𝑖 and 𝜙𝜙𝑗𝑗 are values of superconductor phase at nodes “i” and “j” correspondently. 

Resistor 

𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝜙𝜙𝚤𝚤̇ −𝜙𝜙𝚥𝚥̇

𝑅𝑅
 , where 𝜙̇𝜙𝑖𝑖 and 𝜙̇𝜙𝑗𝑗 are values of the first time derivative of superconductor phase (voltage) at 

nodes “i” and “j” correspondently. 

Capacitor 

𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝐶𝐶 ∗ (𝜙𝜙𝚤𝚤̈ − 𝜙𝜙𝚥̈𝚥) , where 𝜙̈𝜙𝑖𝑖 and 𝜙̈𝜙𝑗𝑗 are values of second time derivative of superconductor phase at 
nodes “i” and “j” correspondently. 

Mutual inductance model 

LLM(L1, L2, Lm12) ,where L1 and L2 is the name of inductors having magnetic coupling Lm12 between 
them.  Assuming, that the inductors values are L1 and L2 correspondently, the phase-current relation is 

𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗 = 𝐿𝐿1 ∙ 𝐼𝐼𝑖𝑖,𝑗𝑗 + 𝐿𝐿𝐿𝐿12 ∙ 𝐼𝐼𝑘𝑘,𝑙𝑙  

𝜙𝜙𝑘𝑘 − 𝜙𝜙𝑙𝑙 = 𝐿𝐿2 ∙ 𝐼𝐼𝑘𝑘,𝑙𝑙 + 𝐿𝐿𝐿𝐿12 ∙ 𝐼𝐼𝑖𝑖,𝑗𝑗  

Inductances L1 and L2 are connected to nodes i & j and k & l respectively. 𝐼𝐼𝑖𝑖,𝑗𝑗 and 𝐼𝐼𝑘𝑘,𝑙𝑙 are currents from 
node “i” to node “j” and from node “k” to node “l”. 

Josephson junction models 

RSJ model 

A linear resistive Josephson junction model, a;so known as Mc Cumber-Stewart model [3]. 
rsj(Ic, Rn, C) 
where 
“Ic” is junctions’ critical current,  
“Rn” is its normal resistance, and  
“C” is its capacitance.  
The Mc Cumber-Stewart relation [3] establishes the current-phase relation in RSJ model. 

𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝐼𝐼𝑐𝑐 ∙ sin�𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗� +
𝜙̇𝜙𝑖𝑖 − 𝜙̇𝜙𝑗𝑗
𝑅𝑅𝑛𝑛

+ 𝐶𝐶 ∙ (𝜙̈𝜙𝑖𝑖 − 𝜙̈𝜙𝑗𝑗) 
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For convenience, there are a few “function closures” (substitutions) for RSJ model defined in PSCAN2 
parser: 
 
VB(Ic, Vc, bc) => RSJ(Ic, Vc/Ic, bc*Ic/Vc

2), where Vc is IcRn product and bc is a McCumber parameter; 
J(J1) => RSJ(J1*Xj, 1.0/J1, J1), where J1 is a critical current parameter, Xj = 1.0 is a global parameter 

describing a critical current density deviation. The function assumes Ic*Rn = 1.0 and bc = 1.0 (i.e., 
a nominally shunted Josephson junction); 

JJ(J1, Xj1) => RSJ(J1*Xj1*Xj, 1.0/J1, J1), where J1 is a critical current parameter, Xj1 = 1.0 is a hierarchical 
(EXTERNAL) parameter describing individual JJ critical current deviation (this is very handy at 
circuit optimization), Xj = 1.0 is a global parameter describing a critical current density deviation. 
The function assumes that Ic*Rn = 1.0 and bc = 1.0 (i.e., a nominally shunted Josephson 
junction); 

JJJ(J1, Xj1, Vj1) => RSJ(J1*Xj1*Xj, Vj1/J1, J1*Xj1), where J1 is a critical current parameter, Xj1 = 1.0 is a 
hierarchical (external) parameter describing individual JJ critical current deviation (i.e. area), Vj1 
is a Ic*Rn product factor, and Xj = 1.0 is a global parameter describing a critical current density 
deviation. 

 
RSJN model of Josephson junction 

A non-linear resistive Josephson junction model.  This model describes non-linear behavior of a 
Josephson junction better than its linear predecessor does.  
The notation is 
rsjn(Ic, Rn, Vg, n, C) 
“Ic” is junctions’ critical current, 
“Rn” is its normal resistance, 
“Vg”    is superconductor gap voltage, 
“C” is its capacitance, and 
“n” is a polynomial approximation degree (a positive even number, practically - 6, 8 or 10),  
The current-phase relation in RSJN model is described by the following relation 

𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝐼𝐼𝑐𝑐 ∙ sin(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗) + 𝑉𝑉𝑖𝑖,𝑗𝑗
𝑅𝑅𝑛𝑛
∙

�
𝑉𝑉𝑖𝑖,𝑗𝑗
𝑉𝑉𝑔𝑔

�
𝑛𝑛

1+�
𝑉𝑉𝑖𝑖,𝑗𝑗
𝑉𝑉𝑔𝑔

�
𝑛𝑛 + 𝐶𝐶 ∙ (𝜙̈𝜙𝑖𝑖 − 𝜙̈𝜙𝑗𝑗)   

Here,  𝑉𝑉𝑖𝑖,𝑗𝑗 = 𝜙̇𝜙𝑖𝑖 − 𝜙̇𝜙𝑗𝑗  is a voltage drop on the junction. 
 
For convenience, there are a few “function closures” (substitutions) for RSJN model defined in PSCAN2 
parser: 
JN(J1) => RSJN(J1*Xj, 1.0/J1, RSJN_VG, RSJN_N, J1), where J1 is a critical current parameter, Xj = 1.0 is a 

global parameter describing a critical current density deviation. The function assumes Ic*Rn = 
1.0 and bc = 1.0 (i.e., a nominally shunted Josephson junction). RSJN_VG and RSGN_N are 
globally defined variables for RSJN model; 
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JJN(J1, XJ1) => RSJN(J1*XJ1*Xj, 1.0/J1, RSJN_VG, RSJN_N, J1*XJ1), where J1 is a critical current 
parameter, Xj = 1.0 is a global parameter describing a critical current density deviation, Xj1 = 1.0 
is a hierarchical (external) parameter describing individual JJ critical current deviation (i.e. area). 
The function assumes Ic*Rn = 1.0 and bc = 1.0 (i.e., a nominally shunted Josephson junction). 
RSJN_VG and RSGN_N are globally defined variables for RSJN model; 

 

Tunnel model of Josephson junction 

TJM is the most complex and adequate model of a Josephson junction.  It is based on Werthamer model 
[4] and employs Dirichlet series approximation of its integral kernels [5]. 

tjm(coeff_set_name, Ic, Wbc, Wvg, Wvcrat, Wvrrat)  

coeff_set_name – a TJM approximation set name (text string). It is normally listed in the file psconfig.py, 
but can be custom made. There are four default Direchlet series coefficient sets for different 
widths of Riedel peak [6] (fabrication process dependent).  To obtain graphical representation of 
the available TJM kernels, run tjmplot.py file from the auxiliary directory in PSCAN2 package (for 
an expert).  

Ic – critical current 
Wbc – dimensionless capacitance of a JJ (βc) 
Wvg – gap voltage (Vg) 
Wvcrat –  IcRn/Vg ratio (Ambegaokar-Baratoff relation) [7] 
Wrrat – Rn/Rsg  (normal-to-subgap resistance ratio). 
 
For convenience, there are a few “function closures” (substitutions) for TJM model defined in PSCAN2 
parser: 
jt(J1) => tjm(“tjm1”, J1*Xj, Wbc, Wvg, Wvcrat, Wvrrat), where J1 is a critical current parameter, Xj = 1.0 is 

a global parameter describing a critical current density deviation.  Wbc, Wvg, Wvcrat, and Wrrat 
are globally defined TJM parameters.  It uses “tjm1” coefficients set from the default set in 
psconfig.py. 

jjt(J1, Xj1) => tjm(“tjm1”, J1*Xj1*Xj, Wbc, Wvg, Wvcrat, Wvrrat) where J1 is a critical current parameter, 
Xj = 1.0 is a global parameter describing a critical current density deviation, Xj1 = 1.0 is a 
hierarchical (external) parameter describing individual JJ critical current deviation (i.e. area).  
Wbc, Wvg, Wvcrat, and Wrrat are globally defined TJM parameters.  It uses “tjm1” coefficients 
set from the default set in psconfig.py. 
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Circuit parameters definition files 
While circuit netlist is in a single hierarchical netlist file, the parameters and HDL descriptions are in *.hdl 
files.  Every cell (a subcircuit) in the simulated circuit netlist should have a corresponding 
“<cellname>.hdl” file either in the current work directory or in one of the library paths listed in 
$PSCAN_CIRCUIT_PATH.   The environment variable PSCAN_CIRCUIT_PATH includes library directories in 
format 
PSCAN_CIRCUIT_PATH = “dir1;dir2;dir3; …” 
The file with circuit definition has the following format: 

Parameter 

<global_param1> = <val1>, 

 … 

 <dlobal_paramN> = <valN>; 

Internal 

  <global_internal1> = <exp1>, 

  … 

  <global_internalN> = <expN>; 

 

circuit <cell_name> () 

{ 

 Parameter 

  <param1> = <pval1>, 

  … 

  <paramN> = <pvalN>; 

 External 

  <external1> = <extval1>, 

  … 

  <externalN> = <extvalN>; 

 Internal 

  <internal1> = <intexp1>, 

  … 

  <internalN> = <intexpN>; 

 Value 

  <value1> = <valexp1>, 

  … 

  <valueN> = <valexpN>; 

freeze 

  <jname1>,…,<jnameN>; 

 rule <rname1>(<init_expr>) 

  <expr1>, 

  … 

  <exprN>; 

 rule <rname2>(<init_expr>) 

  <expr1>, 

  … 

  <exprN>; 

 … 

} 
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Here, <cell_name> - is the subcircuit (instance) name.  There are six types of record in the instance 
description file, - parameter, external, internal, value, freeze, and rule. 

parameter - is a subcircuit variable parameter.  A PARAMETER variable has floating-point value and can 
be used in element’s models. It has the same value in all instances of the subcircuit. For 
example, if parameter J1 in the cell named JTL changes, it would change in all instances of JTL 
subcircuit.  The access to the PARAMETER variable is through its cell name, e.g., critical current 
of junction J1 in the cell JTL has a full name “jtl.j1” 

external - is a circuit hierarchical parameter. An EXTERNAL variable has floating-point value and can be 
used in element’s models. But, unlike a PARAMETER variable, it has individual value for every 
instances occurrence in the circuit. For example, external parameter XJ1 in JTL circuit MTL1 can 
have different value from the value of XJ1 EXTERNAL parameter in circuit MTL2.  For 
convenience, we use a non-binding convention of starting EXTERNAL parameter names with “X”.  
The access to an EXTERNAL variable is through the cell’s full path, e.g., optimization factor for 
critical current of junction J1 (Xj1) in the second cell JTL1 in first cell STDIN in TESTNOT example 
circuit (fig. 2) has a full name “.m1.m2.xj1” (note the leading dot in the name).  A variable gets its 
full name only after PSCAN2 initialization, so, in the current version of the program, a user 
cannot assign different initial values to the same EXTERNAL parameter in different cell instances. 

internal - is the a circuit parameter, that changes every time step during circuit simulation. An INTERNAL 
parameter is a floating-point expression and can be used in element’s models. Different 
instances of the same subcircuit may have different values of the same internal parameter. An 
INTERNAL parameter can be a function simulation time (there is a reserved global internal 
parameter called ‘TCURR’, that is a current time in the simulation). An INTERNAL parameter 
cannot be a function of resulting phase, current, or voltage value across circuit elements or 
nodes.  After initialization, an INTERNAL parameter can be accessed through its full name (same 
as EXTERNAL) 

value - is an expression of circuit’s calculable parameters (e.g., phase, voltage, current, etc.).  A VALUE 
parameter is a floating-point expression that can depend on simulation time, phase, current, or 
voltage across circuit elements or nodes.  It may not be used as a parameter for circuit element’s 
models. Obviously, different instances of same circuit have different values of the same VALUE 
variable. 

freeze - is a list of “frozen” Josephson junctions. These junctions are not to be monitored during SFQHDL 
simulation of the circuit.  Switching of a “frozen” junction would not generate an event during 
circuit simulation. 

rule - is definition of SFQHDL rule, describing expected behavior of the circuit at some certain condition.  
A “rule” has a name followed by <init_expr>, an expression, that activates the rule, when it is 
equal to logical “True” (any non-zero value).  Then, follows the list of events. See SFQHDL 
language description below. 
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Global parameters or internals can be declared outside of any circuit. They are visible in all circuits and 
parameters declared inside circuit definitions cannot have similar names. 

SFQHDL syntaxes 

SFQHDL is a hardware description language developed mainly for simulating digital superconductor RSFQ 
circuits [8].  On logic level, (R)SFQ circuit functionality can be described as a chain of “switching” events 
of Josephson junctions.  Under “a switching event”, we assume a 2π phase slip corresponding to the 
magnetic flux (equivalent to a flux quantum) penetration through the junction.  That results in a short 
SFQ voltage pulse across the Josephson junction.  
An SFQHDL script consists of a set of structures, called “rules”.  As we already mentioned, each rule has a 
unique name, the initialization condition, and a body comprising a chain of logical expressions (events).   
 

rule <rname>(<init_expr>) 

 <expr1>, 

 [<expr2>, <expr3>, <expr4>], 

 <expr5>, 

 … 

 <exprN>; 

After initializing, the rule starts consequently querying the sequence of expressions <expr1> … <exprN> 
for “True” return value, until the “False” is occurred or the last expression returns “True” (success). Each 
logical expression returns logical value True or False.  For the successful “rule” execution, every 
expression should return “True” value in the order listed in the rule body.  For instance, if <expr2> in the 
example above returned value before <expr1> did so, the execution of rule <rname> would have failed. 
However, a several expressions can be grouped into a cluster within brackets (e.g., “[e2, e3, e4],”). In this 
case the order of execution of these expressions is not being traced, and the next expression (<expr5>) 
should not be executed before the last expression in the cluster. The rule deactivates itself on success or 
interrupts simulation with corresponding return code on failure. All rules are being processed in parallel 
at each circuit simulation time step.   
 
PSCAN2 has the following built-in functions usable in HDL script. 
inc(<jelement>/<pelement>) – returns True, if number of flux quanta across the element has increased 

by 1 during the current time step 
dec(<jelement>/<pelement>) – returns True, if number of flux quanta across element has decreased by 

1 during the current time step 
set(<pin>) – sets node’s logical variable to “active” at the next time step 
get(<pin>) – returns value of node’s logical variable 
exit(<message>, <condition>) – terminates execution of the rule with error message <message> when 

<condition> becomes non-zero (true). Used in rules to abort circuit simulation upon some 
condition. Example: exit(“Wrong state”, tcurr > 300 and n(j1) > n(j2)) 

print(<v1>, ….) – prints string representation of argument values to the stdout during rules execution. 
Always returns True. Example: print(“State value stst1=”, stst1, “ at “, tcurr) 

freeze(<jname1>, …) – places junctions into the list of “frozen” junctions. Switching of a junction from 
this list will not produce an HDL event during circuit simulation (i.e., will be ignored).  Example: 
freeze(j1, j2, j13) 
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unfreeze(<jname1>, …) – removes junctions from the list of “frozen” junctions.          Example:  
unfreeze(j1, j2) 

pyeval(“<python expression>”) – executes a python-syntaxes expression and returns its value. 
 
Let’s look at the example of HDL script for circuit TESTNOT (Fig.2) 
 
circuit testnot() 
{ 
INTERNAL 

p1=0.85+psfq(400,4,200), 
p2=0.85+psfq(400,4,100)+psfq(400,4,300); 

rule  m1go(inc(p1)) 
set(m1.2); 

rule  m2go(inc(p2)) 
set(m2.2); 

} 
 
Here, psfq(p,d,s) function generates an SFQ-like 2π phase jump (see above).  TESTNOT is a “root” circuit, 
- it has got no Josephson junctions and, thus, its script is very simple.  Two rules (m1go and m2go) detect 
input pulses from the corresponding phase sources (p1 and p2) and initialize execution of internal rules 
in sub-circuits m1 and m2 by activating their input pins (m1.2 and m2.2).  Here (Fig. 2), all sub-cells are 
directly connected to each other (there is no primitives between them).  So, e.g., pins M1.1 and MTL1.1 
share the same node and the output of cell M1 activates cell MTL1 automatically.   
This is not the case in sub-cell STDIN1 (Fig. 3b).  Here, the input 1 of sub-cell M1 should be explicitly 
activated by the following rule 
 
circuit stdin1()  
{ 
rule input (get(2)) 
 set(m1.1); 
} 
 
As you can see, HDL script for subcell STDIN1 requires only one rule.  The rule “input” is to “jump over” 
the inductor L1.  This is a good example of using functions get() and set(). 
 
The simplest RSFQ cell is a Josephson transmission line (Fig. 3c, 3d).  SFQHDL script of unidirectional JTL 
consists of a single rule “go”.  
 
circuit jtl() 
{ 
… 
rule GO(GET(1)) 
 INC(J1), 
 SET(2), 
 INC(J2); 
} 
 



15 
 

The rule “go” activates at signal at pin 1, then, junction J1 switches.  Here, for better timing purpose, we 
activate pin 2 (the output) before J2 switching, so, the next cell would be ready to accept incoming pulse 
well before its arrival.  There are many nuances in SFQHDL script writing, this is one of them.  This script 
assumes that SFQ pulses propagate from pin 1 to pin 2.  While making “bidirectional” script is possible, 
we do not recommend it for inexperienced users. 

Let us write SFQHDL script for more complex cell, e.g., inverter (Fig. 3a). 

circuit not1() 
{ 
rule rd0(GET(2) and n(j3)==n(j4)) 
 set(3), 
 [inc(j5), inc(j1)]; 
rule set1(GET(1) and n(j3)==n(j4)) 
 inc(j2), 
 inc(j3); 
rule rd1(GET(2) and n(j3)==n(j4)+1) 
 inc(j4); 
} 
 
This cell has memory and can be in two states (0 and 1).  Here, we use function N() for determining the 
state of the cell.  The quantizing (flux storage) loop consists of junctions J3 and J4 and storage inductor 
L1 (Fig. 3a).  The number of SFQ stored (either 1 or 0) in the loop is equal to N(j3) - N(j4).  So, the cell is 
in state “0”, if n(j3) is equal to n(j4), and in state “1” otherwise.   
The rule “rd0” activates when an SFQ pulse arrives to the clock pin (2) in state “0”.  The inverter 
produces output by switching junction j5.  The first expression in the rule (set(3)) signals to the outside 
node that the output is coming. At about the same time, junction J1 switches to prevent pulse from 
going to the data line.  Because the order of switching of junctions J1 and J5 is irrelevant for 
functionality, these two events are placed in brackets (as it’s already been mentioned, the analyzer 
ignores the order of events placed between brackets).  The other two rules (“set1” and “rd1”) are more 
simple and easy to interpret. 
 
 
 
Input signals and Test vectors 

An input signal in RSFQ is represented by a 2π phase jump associated with an SFQ pulse.  In PSCAN2, we 
use phase sources at the root level of the circuit for generating input signals.  The phase drop on such a 
generator is time dependent and usually described by an “Internal” parameter.  Looking back into 
testnot.hdl file from the example, we see two different ways of defining inputs for the circuit.  One is 
defining “Internal” parameters using time-dependent function psfq(p, d, s) 
 
INTERNAL 

p1=0.85+psfq(400, 4, 200), 
p2=0.85+psfq(400, 4, 100)+psfq(400, 4, 300); 
 

Here, we define two inputs, - “data” (p1) and “clock” (p2).  On a span of 400 PSCAN units of time (PUT), 
one “Clock” pulse with width 4 PUTs comes at 100 PUT, then – “Data” pulse comes at 200 PUT, and then 



16 
 

– another “Clock” pulse at 300 PUT.  Although this way of defining input signals is simple, it is highly 
inconvenient for simulating a large circuit with many inputs. 
 
In order to cope with a large circuit or/and with a long serial input pattern, PSCAN2 has a convenient 
object class called TestVector.  The user can define test vectors in the separate file pscanrc.py situated in 
the current directory.  This file is the place for user-defined structures, variables or functions.  PSCAN2 
loads this file if it is present in the current working directory from which python is launched. 
 
The Python class TestVector is defined in pscan2/TestVector.py file and can be loaded from 
pscan2.testvector module. 
 
TestVector(<name>, <vec>, tunit = 20.0, period = 0, repeat = 0, start = 20.0, pulse_duration = 5.0) 

Here,  
<name> – is the name of test vector. If name is not an empty string (“”), the test vector will be placed in 

the global test vector table and would be available in the circuit. 
<vec> – is a definition of the test vector. It is a text string of “0”s and “1”s, - a digital representation of 

the test vector.  The total number of “bits” in the string <vec> (N=length(vec)) defines the 
duration of the sequence, unless period is not 0. 

tunit – is a “time unit”, i.e. the time distance between “bits” in <vec>. 
period – is the length of the test vector <vec> section in tunits. If <period> is greater than the length of 

<vec> parameter (period > N), the vector string <vec> will be padded with (period-N) “0”s. 
repeat – is a repeat count. The test vector will be repeated repeat times and then stay constant. If 

repeat = 0 (default), the test vector would repeat indefinitely. 
start – is the start time of the test vector. This is the time at which the whole test vector procedure 

should begin, i.e. the time shift of 0 count. 
pulse_duration – is the duration (width) of the SFQ pulses in the test vector. 
 
Let us open, as an example file pscanrc.py in directory testnot.  Its content is only three strings defining 
two input test patterns:  
 
from pscan2.TestVector import TestVector 
TestVector("d1", "010", 100.0, 0, 1, 100.0) 
TestVector("d2", "101", 100.0, 0, 1, 100.0) 

These records define two test vectors: “d1” (invertors’ data input) and “d2” (invertor’s clock).  In the 
root description file of the circuit (testnot.hdl), the following records assign the test vectors to the 
corresponding phase generators by means of built-in function tecv().  A dc phase shift of 0.85 simply 
compensates the phase shift of a nominally dc-biased Josephson junction. 
 
INTERNAL 
 p1 = 0.85 + tvec("d1"), 
 p2 = 0.85 + tvec("d2"); 
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Python interface. 
 
PSCAN2 is implemented as a Python module “pscan2”.  A set of python-based functions is provided for 
running PSCAN2 from the PYTHON console.  The interface includes the following functions: 
 
initialize(<args>) – initializes PSCAN2 and load circuit netlist and definition files 
<args> is the array of arguments, where the last argument is the name of root circuit and base name of 

the circuit netlist file (the full name of the netlist file should have “.cir” extension appended). All 
previous arguments, if existed, are the names of circuit definition files that should be preloaded 
into memory.  After loading netlist file, PSCAN2 will try to load circuit definition files used in the 
netlist. If circuit definition was preloaded, it will use that definition, otherwise it will try to load a 
corresponding “*.hdl” file. 

 
find(<name>[, <type>]) 
Finds objects in circuit hierarchy by name. 
<name> - a hierarchical name of object. For global parameters or global internals it is just a name. For 

example: find(“XI”). For the objects in root circuit, name should start with “.”. For example: 
find(“.J1”). For objects on deeper levels of hierarchy, name should contain all subcurcuit 
instances, separated by “.”. For example: find(“m1.jtl1.XJ1”) 

<type> is a type of object to find:  
'e' – circuit element 
'n' – node 
'p' - parameter or external. Default value 
'v' - internal or value 

The function returns instance of the found object or raises an exception, should the object has not been 
found. 
 
param_find(<circuit_name>, <parameter_name>) 
Finds parameter <parameter_name> in a circuit <circuit_name>. There is no need to specify full 

hierarchical path for parameters, - they can be found by the circuit name. Function will return 
object instance of the parameter, or raise exception. 

 
find_re(<pattern>[, <type>]) 
Similar to find() function, but returns a list of objects, that are matching simple regular expression. It 

uses Python module “fnmatch” and supports the following special symbols in the pattern: 
*  - a “wild card” (matches any set of characters) 
?  - matches any single character 
[seq] - matches any character from “seq” 
[!seq] - matches any character but from “seq” 
 

<type> is a type of objects to find, the same as in find() function 
Function will return list of found objects. If no objects match the pattern, list will be empty. 
For example: find_re(“m1.xj*”) will find all parameters in circuit m1, started with “xj”. 

 
param_re(<circuit_name>, <pattern>) 
Similar to param_find() function, but returns list of circuit parameters matches simple regular 

expression, with same syntax as in find_re().   
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For example: param_re(“not1”, “j*”) returns all parameters in circuit “not1”, whose name starts with 
character “j”. 

 
simulate(<tseq>, print_messages = False, pretty_print = False) 
Simulate circuit and test SFQHDL rules. 
<tseq> is the maximal simulation time. If during the simulation some junction incorrectly switches (i.e., 

there are no any rule waiting for its switching in inc() or dec() expression), the simulation stops 
with the corresponding error message.   

print_message - if True, there will be trace of rule execution printed out during the simulation.  
pretty_print - if True, rule traces will be printed in the pseudo-graphical form.  
The function returns True, if there was no unexpected Josephson junction switches during the simulation 

and there are no any active rules left at the end the simulation time (False otherwise). 
 
margins(<parameter>, <tseq>, messages_level=0, max_margin=0.4) - Calculates operating margins of 

the parameter. 
<parameter> - name of the parameter or circuit parameter or external object instance, obtained with 

functions find() or param(). 
messages_level - defines extent of printed messages: 

0 – no messages (silent mode) 
1 – basic messages related to calculating margins of the parameter 
2 – all messages, including rule’s execution traces during the simulation 

max_margin – is the maximal interested value of the parameter margins. Meaning, e.g., in case of 
max_margin=0.3, the correct operation of the circuit will not be verified beyond +/- 30% range.  
The default value is 0.4 (i.e., +/-40%). 

Function returns the list of the left and the right margin.  The list of two None objects is returned, if the 
circuit does not operate correctly at the current point (initial value of the parameter).  

 
save_parameters(<circuit_list>) – save circuit parameters into parameters values files. 
<circuit_list> - is a list of subcircuit names to save parameters from.  A file <circuit>.par will be created 

for every cell name from the list. 
 
load_parameters(<circuit_list>) – load circuit parameters from *.par files. 
<circuit_list> - is a list of circuit names for which parameters are to load. For each <circuit> from the list, 

if file <circuit>.par exists, it will be loaded.  
 
save_all_parameters(<fname>) – Save all parameters in the circuit, including global parameters, to the 

file <fname>.  
 
load_all_parameters(<fname>) – Loads (updates) circuit parameters from the file <fname> created by 

save_all_parameters() procedure.  
 
ivcurve(<xpar>, <xmin>, <xmax>, <dx>, <xback>, <yexpr>, <yeps>, <twait>, <tmin>, <tmax>) – calculates 

dc current-voltage dependence curve. 
<xpar> - parameter to change. Can be found by function find(). For example find('.i1', 'p') 
<xmin> - minimal value of parameter 
<xmax> - maximal value of parameter 
<dx> - step for parameter's changes 
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<xback> - if False parameter will be scanned from <xmin> to <xmax> with step <dx>.  If True, - parameter 
will be scanned from <xmin> to <xmax> and back to <xmin>. 

<yexpr> - expression to average over the time for each fixed value of parameter <xpar>.  It is defined by 
function create_expression(), e.g., create_expression("v(j1)", ".") 

<yeps> - relative accuracy for averaging expression <yexpr> over time 
<twait> - setup time after the changing parameter <xpar> 
<tmin> - minimal averaging time 
<tmax> - maximal averaging time. The averaging process stops after <tmax>, even if the averaging 

precision <yeps> has not been reached.  
Function returns a list of calculated points ([x, y] pairs). 
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PSCAN2 Graphical User Interface (GUI) 
The pyQt-based graphical user interface can be called as a python module: 
python  –m pscan2.gui  <root_cell_name> 
 
Let us look at the example “testnot” again.  In the directory testnot, run  
python  –m  pscan2.gui  testnot 

 
 
Fig. 4.  A screenshot of PSCAN2 graphical user interface 
 
The interface window has six frames: “Circuit”, “Parameters”, “Externals”, “Internals & Values”, 
“Elements”, and “Rules”.  The whole circuit hierarchy is in the left frame, - please, expand the cell tree 
and brows the schematics (Fig. 2,3).  In frames “Parameters” and “Externals”, the numerical fields are 
writable.  In order to change the parameters value, the user should select the field he wants to change, 
type the new numerical value and press “Enter” on the keyboard.   
 
The toolbar is on a top of the main window.  It has six icons (from left to right):  
“Load parameters” – loads parameters from the chosen file. 
“Save all parameters” – saves all parameters to the chosen file. 
“Save circuit parameters” – saves parameters in the format convenient for updating *.hdl files. 
“Units” – sets PSCAN dimensionless units. 
“Setup Graph” – launches the window for setting up transient analysis. 
“Calculate margins” - launches the window for setting up parameters operational margins extraction. 
“Optimize margins” - launches the window for setting up multi-parameter optimization procedure. 
“Stop” – the icon in the right top corner, interrupts simulations and saves the intermediate results. 
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Transient analysis 
 
In the toolbar, pick “Setup Graph” icon (the name of the selected icon is on the bottom of the GUI 
window).   

 
a) 

 
b) 

Fig. 5.  Setup Graph window. Initial (a) and filled (b) 
 
There are two types of graphical windows, - “Values” and “Rules”.  By browsing the schematics in 
“Circuit” frame, pick wanted for observing parameters from “Elements” frame and SFQHDL script tokens 
from “Rules” frame.   Then, distribute them between corresponding plot frames in the “Graph Setup” 
window.  You may add or remove plot frames with “Add plot” and “Delete” buttons.  To select the 
current frame, you need to point at the frame’s border.   
 

 
Fig. 6.  Transient analysis. 
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Now, let’s leave this exercise for later and just press button “Load” to load configuration that came with 
the example (Fig. 5b).  In the future, once you gathered all parameters for the transient analysis, press 
“Save” button to store the created configuration; - this should save you a lot of time.  After finishing 
configuring the graphics, press “Done” button for activating the simulation. 
 
In the obtained graphic window, you may change scaling (zooming in or out) of each trace individually or 
for all traces together.  By pressing and dragging the left button of the mouse, you can pan the trace, 
while the right button provides zoom.  By right clicking on the trace, you will get into the 
synchronization menu.  
 
Operational margins analysis 
 
Close the graphical simulation window and click on the “Calculate Margins” icon in the main toolbar 
(Fig. 7).  Then, select “Globals” in frame “Circuit” and “XI”, “XJ”, and “XL” in frame “Parameters”.  Press 
button “Move” (with an arrow) to move selected parameters to the “Margins” window.  Select cell 
“mi :not1” in “Circuit” frame and all parameters XJ* in the “Externals” frame.  Move them too.  Press 
“Done” for running parameters operational margins calculation.  The results will be printed to the 
console (STDOUT) (Fig. 7b).  By default, all margins start at 40%.  It is set by optional parameter 
max_margin in function margin(). 
 

 
a) 

 
b) 

Fig. 7.  Margins calculation precedure.  Setup (a) and the result (b) 
 
Parameters optimization 
 
The multi-parameter circuit optimization algorithm is based on COWB optimizer [2] in old PSCAN.  To 
call optimization setup window, click on “Optimize Margins” icon in the toolbar.  In order to create the 
optimization procedure, the user has to create two lists of parameters, - the list of parameters to 
optimize with desired margins and the list of parameters allowed to change during the optimization with 
their variation limits.  Usually, parameters to optimize are “Externals” or “Globals”, while prarameters 
allowed to be modifed are “Parameters”.   
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In order to create the list of being optimized parameters, select them the same way as described in 
previous section (Fig. 8a) and then, highlight and move them to “Parameters to Optimize” frame by 
pressing button “To Optimize”.  The highlighted parameters will be moved to the “Parameters to 
Optimize” frame (Fig. 8b).  To each parameter there will be assigned a default “required margins” value 
that can be cutomized. 
 

  
Fig. 8a.  Parameters optimizer.  Creating the list of parameters to optimize. 
 

 
Fig. 8b.  Parameters optimizer.  List of parameters to optimize with desired margins value. 
 

 
Fig. 8c.  Parameters optimizer.  Creating the list of parameters allowed to change. 
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Similarily, the list of parameters allowed to change (Fig. 8c) can be created.  Each parameter in this list 
has a couple of default numbers assigned to it, - minimal and maximal values of the parameter.  These 
numbers limit parameter’s variation.  They can be changed the same way as described above. 
 

 
 
Fig. 8d.  Parameters optimizer.  Creating the list of parameters allowed to change with their limits. 
 
“Save” button on a top of the window saves the created tables to the file “opt_menue.dat in the current 
directory.  Similarly, “Load” button restores these tables into the open optimization setup window. 
 
For the demonstration purpose, we have created the demo layout that can be loaded by pressing “Load” 
button, - please, do so.  After that, you can launch the optimizer by pressing “Done” button.  The 
optimization process might be quite time consuming, depending on circuit complexity and the desired 
margins values.  In the present example, this should take 5-10 min.  You may interrupt the optimization 
by pressing “Stop” button in the top-right corner of the main window. 
 
Save/Load Parameters 
 
The four left icons in the toolbar (fig. 4) belong to the procedures related to saving or restoring current 
parameters of the circuit.   
 
“Load parameters” button calls procedure that loads all circuit parameters from the file created by the 
“Save all parameters” procedure.   
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“Save all parameters” procedure saves all parameters in text format to the file defined by the user.  The 
format of the file is easily readable and support dimensional units as well.  Each line with the parameter 
and its dimensionless value, has a comment with its physical value, should it had any (see Appendix A). 
 
“Save circuit parameters” procedure saves parameters in the format convenient for updating *.hdl files.  
This is useful for updating cell descriptions. Each cell will have its parameters saved into a file named 
<cell_name>.par.  This files then can be used for updating *.hdl files of the circuit.  After that, the new 
parameter values become permanent and default. 
 
“Units” procedure sets PSCAN dimensionless units.  PSCAN, as it has been described in Appendix A, 
operates with dimensionless parameters.  In order to convert them into the real physical values at “Save 
all parameters” procedure execution, a user should define the units first.  To do so, the user should pick 
arbitrarily units for two physical values: current and voltage.  This should be done at each PSCAN session 
started.   
 
The default units are set in psglobals.py file in the installation directory and can be redefined in 
pscanrc.py file in the current work directory. 
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Appendix A 
PSCAN units 
 
Like its predecessor, PSCAN2 operates with dimensionless units.  For convenience, PSCAN uses 
normalized units system, where the magnetic flux unit is equal to 
Φ0/2π = ħ/2e ≈ 0.33·10-15 Wb 
At these units, the magnetic flux in a loop is equal to the superconductor phase drop in it.   
 
In order to normalize all other units, a user should define two of them: the current unit and the voltage 
unit.  The choice of these units depends on the fabrication process.  For instance, it is convenient using 
close-to-minimal Josephson junction critical current for the current unit and the IcRn product of a 
nominally shunted (βc=1) junction, i.e., plasma voltage, as a voltage unit. 
 
PSCAN determines the physical value of the parameter by its first letter (see table below).  This 
dependence is set by psglobals.Par2Units variable and can be redefined. 
 

First letter in the 
parameters name 

Units of Notation Relation 

P Magnetic flux (supercond. phase) Φu Φ0/2π 
I, J Current Iu Arbitrary 
V Voltage Vu Arbitrary 
T Time tu Φu / Vu 
R Resistance Ru Vu / Iu 
L Inductance Lu Φu / Iu 
C Capacitance Cu Φu·Iu / Vu

2 
 
The typical units for known fabrication processes are in table below 
 

Notation MIT-LL SFQ5ee HYPRES 4.5 kA/cm2 HYPRES 10 kA/cm2 
Iu 0.05 mA 0.125 mA 0.125 mA 
Vu 0.67 mV 0.47 mV 0.63 mV 
tu 0.49 ps 0.7 ps 0.52 ps 
Ru 13.4 Ohm 3.48 Ohm 5.04 Ohm 
Lu 6.6 pH 2.64 pH 2.64 pH 
Cu 36.6 fF 201 fF 103 fF 
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Appendix B 
Default netlist parameters 
 
For convenience, PSCAN2 netlist parser has a built-in function for automatically assigning 
default parameters to the netlist elements.  It happens, when in the “value” field of the netlist 
element there is a “?” symbol. The parser generates default values based on the elements’ 
name.  For instance, a netlist string 
L2  n3  n4  L? 
will be translated to 
L2  n3  n4  L2*XL2*XL 
 
A special case is a Josephson junction element (that has several models) and a mutual inductance 
element (that does not have a default value). 
The default netlist element value fields are in the table below. 
 

Element Name of the element 
(example) 

Value field of 
the element 

Default substitution 

Inductor L13 L? L13*XL13*XL 
Resistor R8 R? R8*XR8*XR 
Current source IB1 I? IB1*XIB1*XI 
Josephson junction J2 J RSJ(J2*XJ, 1.0/J2, J2) 
 J2 JJ RSJ(J2*XJ2*XJ, 1.0/J2, J2) 
 J2 JJJ RSJ(J2*XJ2*XJ, VJ2/J2, J2*VJ2) 
 J2 JT TJM(“tjm1”, J2*XJ, Wbc, Wvg, 

Wvcrat, Wvrrat) 
  JJT TJM(“tjm1”, J2*XJ2*XJ, Wbc, Wvg, 

Wvcrat, Wvrrat) 
 
Here, e.g., XL13 is an EXTERNAL parameter representing an individual inductance deviation, and XL is a 
GLOBAL parameter representing a global inductance deviation. In case of a Josephson junction, J2 is its 
critical current, XJ2 is a hierarchical (EXTERNAL) parameter describing individual critical current 
deviation (i.e. area), VJ2 is an IcRn product of the junction, and XJ is a GLOBAL parameter describing 
critical current density deviation. 
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Appendix C 
Using PSCAN Python-defined parameters. 
 
PSCAN2 has an elaborate set of configuration parameters.  They are mainly defined in three PSCAN 
system files: psglobals.py, psconfig.py, and SimulationParameters.py.  An experienced user can 
manipulate these parameters to adjust PSCAN to his needs.   
When loading, PSCAN2 looks for the file pscanrc.py in the current directory and executes all Python 
command from it before initializing.  This is very convenient for changing the default values of PSCAN 
global parameters. 
 
PSCAN2 parser has a built-in function for evaluating a Python expression.   
pyeval(<string expression>) function evaluates a Python expression in the text string parameter and 
returns the result.  This is very useful for accessing PSCAN global variables and settings. 
 
A very important global variable is a logical variable “OptimizeSimulation” from file “psglobals.py”.  If it 
is “True” (default), PSCAN will query only phase sources and only in the root circuit (RSFQ mode).  So, if 
the user has, say, variable current sources in his circuit and HDL rules invoke them, he must set this 
variable to “False”.  This can be done in pscanrc.py file in the current directory with the record 
 
psglobals.OptimizeSimulation = False 
 
And to query the status of this variable, the user can employ pyeval() function.  Here is an example how 
it can be done along with some parameters initialization: 
 
rule init(tcurr < 5) 
exit(“Set OptimizeSimulation off!”, pyeval(“psglobals.OptimizeSimulation”)) 
xst1=0, xst2=0, 
tcurr > 5; 
 
In this example, rule “INIT” starts executing in the beginning of the simulation, querying variable 
psglobals.OptimizeSimulation and exiting the simulation if it’s True.  The rule initializes variables xst1 
and xst2, otherwise. 
 
For instance, variable INITIAL_RAMP (defined in SimulationParameters.py file) indicates the time needed 
for PSCAN to set up initial values of all currents in the circuit.  Its default values is 10, but a user, for 
some reason, may change it in pscanrc.py file.  So, the user should set the input pulses delay to exceed 
this time.  This may look like below. 
 
INTERNAL 
TRamp = pyeval("SimulationParameters.INITIAL_RAMP"), 
CircuitReady = TCURR > Tramp, 
p1 = psfq(400, 4, TRamp), 
i2 = ai2 * sin(w1 * tcurr); 
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Here, we define a logical variable CircuitReady that indicates that circuit is ready for simulation.  And a 
phase source P1 will launch the first SFQ pulse when all bias currents are set. 
 
The last line defines a variable current source with a sine wave generator by employing a built-in 
function from the Python standard module “math”.  This current source will obviously start setting the 
current from 0.0 time, regardless the INITIAL_RAMP variable. 
 
Another couple of important variables are  
SimulationParameters.DTMax = 10.0 
and  
SimulationParameters.DTMin = 0.01 
 
They defined the range of variation of the time step during the simulation.  An experienced user can 
change these parameters in order to improve speed or quality of the simulation. 
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